

MOTSP 2015, June 11, Brela, Croatia

Re-Use System for Notebooks – the Goals and Rationale of the RUN Project

Dipl.-oec. Max REGENFELDER, ReUse-Verein, Berlin

DI Walter Gander, i4next | international computer trading & leasing GmbH, Vienna

Introduction: Project Facts

- Started 11/2014
- 3 years runtime
- Funded under EU's FP7, CIP-Eco-Innovation, Market Replication
- 8 partners from 3 countries: Germany, Austria, Poland
- Refurbishers, recycling centers, consultants, one association
- Implement a collection and remarketing system for notebooks
 from private households and SMEs -> small batch sizes

Introduction: Project Structure

8 work packages

All issues addressed for starting up a large scale collection and remarketing system:

- Collection concept
- Data security and extraction as service addons
- Refurbishment process
- Marketing concept and transfer to other European countries

Project structure

Starting Point:

 Private households and SMEs neglected for professional refurbishing. Devices should basically be available for refurbishment.

Challenges:

- Small batch sizes
- Re-usability of devices? What kind of devices^{Direct} are returned?
- Logistics challenge: reach throughput

Rationale:

- Avoid competition in niche
- Innovative service add-ons
- Materials recycling is economic viable reuse is profitable
- Easy take-back

Assessed reverse logistics and distribution channels

Ecological Impacts of Notebooks

- Main environmental impacts during production phase (Ciroth & Franze, 2011)
- Many scarce or valuable resources very low functional recycling rates (Graedel et al., 2011; USGS 2013)
- Waste generation (whole lifetime): average office notebook: 11.240 kg of non-hazardous waste and 1.482 kg hazardous waste (IVF, 2007)
- New product generations have only slightly lower energy consumption in use (re-use devices only two product generations older) (Prakash et al., 2013)
- World market 2013: 180.9 million devices (IDC, 2013) - Germany 2014: 5,436,000 devices to private consumers (gfu et al., 2015)

Type of Device	CO ₂ e emissions
14,1" Fujitsu EcoLeaf (Jibiki, 2010)	96 kg
12,1" HP (Hischier et al., 2007)	155 kg
14" Dell Latitude E6400 (Stutz & Moriarty, 2010)	250 kg
11" MacBook Air (Apple, 2015)	352.6 kg
15" MacBook Pro (Apple, 2015)	704 kg

Overview of CO₂ (equivalent) emissions from manufacturing of selected notebooks

Material	Weight in mg	Used mainly in component
cobalt	65,000	lithium-ion battery
neodymium	2,100	spindle motor, speakers, voice coil actuator
tantalum	1,700	capacitors
silver	440	(main) circuit boards
praseodymiu m	270	voice coil actuator, speakers
gold	100	main circuit board
dysprosium	60	voice coil actuator
indium	40	display
palladium	40	(main) circuit board
platinum	4	hard disks
yttrium	1.8/ 1.6	background lighting

Average usage of critical metals per notebook (LANUV, 2012, Table 23]

"all measures of relevant actors [...] which develop new ideas, behaviour, products and processes, apply or introduce them [but also] contribute to a reduction of environmental burdens or to ecologically specified sustainability targets." (Rennings, 2000)

- Centered on environmental impact
- Not only technically-centred → Innovation also is rooted in radically new or improved business models or patterns of interaction between consumers, firms and other actors (Chesbrough & Rosenbollm, 2002; Wirtz, 2010)
- Circular economy and loop-cloosing: re-valuation of goods and materials (Slowak &

Seite 6 June 11, 2015 RUN-Project, MOTSP 2015, Brela, Croatia

Regenfelder, 2015)

ovation Grant Agreement No.ECO/13/630329 | www.ReUse-Notebook.eu | eMail: Info@ReUse-Notebook.eu

Eco-Innovativeness of RUN

ECO: Positive Ecological Impact by Prolonging Lifetime of Notebooks

- Several ten thousands of devices will be collected and refurbished during project's run-time
- Ecological savings from substitution of new production (lowest boundary for substitution found in literature is 0.2 (Ciroth & Franze, 2011)) – incorporated natural resources stay in industrial cycle
- Not every device will fulfil requirements for refurbishing → manual disassembly before materials recycling → increase the yield and quality of the recycling process compared to shredding whole appliances (Schöps et al., 2010)

INNOVATION : New Business Model

- Unlock a new source for used appliances
- New cost-efficient logistics concept which is able to handle very small batch sizes down to one piece

Thank you!

